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1 Foreword 

The nonhydrostatic solver in FV3 was wholly designed by Dr. Shian-Jiann Lin, now retired from 

the Geophysical Fluid Dynamics Laboratory. What follows is our interpretation of the 

nonhydrostatic solver and sufficient background of the general FV3 algorithm to understand the 

nonhydrostatic implementation. This technical note acts as a means to document the 

nonhydrostatic FV3 and to ensure that credit is properly given to Dr. Lin. 

Lucas Harris 

Xi Chen 

Linjiong Zhou 

Jan-Huey Chen 

2 Introduction 

This document describes the nonhydrostatic solver of the GFDL Finite-Volume Cubed-Sphere 

Dynamical Core, FV3. The nonhydrostatic solver works identically to the hydrostatic solver 

except for the need to solve for two new prognostic variables, the vertical velocity 𝑤 and 

geometric layer depth 𝛿𝑧; and to use the full nonhydrostatic pressure in computing the pressure 

gradient force. In particular the Lagrangian dynamics described within L04 remains valid and all 

vertical processes (advection, wave propagation) remain implicit while all horizontal processes 

are explicit. This document assumes working knowledge of the hydrostatic discretization of FV3 

described in LR96, LR97, L97, L04, PL07, and HL13.  It is strongly recommended that anyone 

who wishes to understand the nonhydrostatic FV3 solver read and understand these 

documents first. Additional relevant material may be found in LPH17 and LH18. All of these 

documents may be found at www. gfdl.noaa.gov/fv3/fv3-documentation-and-references/. 

The nonhydrostatic solver of FV3 has three main components: an explicit horizontal solver for 

all the modes, including the three-dimensional pressure-gradient force, described in section 4; a 

semi-implicit solver for the vertically-propagating sound-wave modes, described in section 5; 

and the Lagrangian vertical discretization described in section 3. 

3 Lagrangian vertical coordinates 

A Lagrangian vertical coordinate is used in FV3. This coordinate uses the depth of each layer (in 

terms of mass or as geometric height) as a prognostic variable, allowing the layer interfaces to 

deform freely as the flow evolves. Further, the flow is constrained within the Lagrangian layers, 

with no flow across the layer interfaces (even for non-adiabatic flows). Instead, the flow deforms 

the layers themselves by advecting the layer thickness and by straining the layers by the vertical 

gradient of explicit vertical motion. This form is automatically consistent with the LR96 scheme, 

avoids the need for explicit calculation and dimensional splitting of vertical advection, greatly 

reduces implicit vertical diffusion, and has no vertical Courant number restriction.  

  

http://www.gfdl.noaa.gov/fv3/fv3-documentation-and-references/
http://www.gfdl.noaa.gov/fv3/fv3-documentation-and-references/
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FV3 uses a hybrid-pressure coordinate based on the hydrostatic surface pressure 𝑝𝑠
∗: 

𝑝𝑘
∗ = 𝑎𝑘 + 𝑏𝑘𝑝𝑠

∗,           (1) 

where 𝑘 is the vertical index of the layer interface, counting from the top down, and 𝑎𝑘, 𝑏𝑘 are 

pre-defined coefficients. Typically, the top interface is at a constant pressure 𝑝𝑇, so 𝑎0 = 𝑝𝑇 and 

𝑏0 = 0.  The spacing of the levels depends on the particular application, and is chosen 

depending on how high of a model top is desired, where additional vertical resolution is 

applied (typically in the boundary layer, but sometimes also near the tropical tropopause), and 

where to transition from hybrid 𝑏𝑘 > 0 to pure pressure 𝑏𝑘 = 0 coordinates. 

4 Prognostic variables and governing equations 

The mass per unit area 𝛿𝑚 can be expressed in terms of the difference in hydrostatic pressure 

𝛿𝑝∗ between the top and bottom of the layers; and, using the hydrostatic equation, can also be 

written in terms of the layer depth 𝛿𝑧1: 

𝛿𝑝∗

𝛿𝑚 = = −𝜌𝛿𝑧. (2)
𝑔

 

The continuous Lagrangian equations of motion, in a layer of finite depth 𝛿𝑧 and mass 𝛿𝑝∗, are 

then given as 

𝐷𝐿𝛿𝑝∗ + ∇ ∙ (𝑽𝛿𝑝∗) = 0                                                     (3) 

𝐷𝐿𝛿𝑝∗Θ𝑣 + ∇ ∙ (𝑽𝛿𝑝∗Θ𝑣) = 0 

𝐷𝐿𝛿𝑝∗𝑤 + ∇ ∙ (𝑽𝛿𝑝∗𝑤) =  −𝑔𝛿𝑧
𝜕𝑝′

𝜕𝑧
 

𝐷𝐿𝑢 = Ω𝑣 −
𝜕

𝜕𝑥
K −

1

𝜌

𝜕𝑝

𝜕𝑥
|
𝑧
 

𝐷𝐿𝑣 = −Ω𝑢 −
𝜕

𝜕𝑦
𝐾 −

1

𝜌

𝜕𝑝

𝜕𝑦
|
𝑧

 

 

Note that these equations are exact: no discretization has been made yet, and the only change 

from the original differential form of Euler’s equations is to integrate over an arbitrary depth 𝛿𝑝∗. 

The operator 𝐷𝐿 is the “vertically-Lagrangian” derivative, formally equal to 
𝜕φ 

𝜕𝑡
+

𝜕

𝜕𝑧
(𝑤φ) for an 

arbitrary scalar φ. The flow is entirely along the Lagrangian surfaces, including the vertical motion 

(which deforms the surfaces as appropriate, an effect included in the semi-implicit solver).  

                                                            
1 In this document, to avoid confusion we write 𝛿𝑧  as if it is a positive-definite quantity. In the solver itself, 𝛿𝑧 is 

defined to be negative-definite, incorporating the negative sign into the definition of 𝛿𝑧; this definition has the 

additional advantage of being consistent with how 𝛿𝑝 is defined, being measured as the difference in hydrostatic 

pressure between the bottom and top of a layer. 
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Variable Description 

𝛿𝑝∗ Vertical difference in hydrostatic pressure, proportional to mass 

𝑢 D-grid face-mean horizontal x-direction wind 

𝑣 D-grid face-mean horizontal y-direction wind 

Θ𝑣 Cell-mean virtual potential temperature 

𝑤 Cell-mean vertical velocity 

𝛿𝑧 Geometric layer height 

Table 1: Prognostic variables in FV3 

The vertical component of absolute vorticity is given as Ω and 𝑝 is the full nonhydrostatic 

pressure. The kinetic energy is given as 𝐾 = 
1

2
(�̃�𝑢 + �̃�𝑣): since FV3 does not assume that the 

horizontal coordinate system is orthogonal, we use the covariant (𝑢 and 𝑣) components of the 

wind vector as prognostic variables and the contravariant (�̃� and �̃�) components for advection, 

avoiding the need to explicitly include metric terms. See PL07 and HL13 for more information 

about covariant and contravariant components. 

The nonhydrostatic pressure gradient term in the 𝑤 equation is computed by the semi-implicit 

solver described section 5, which also computes the prognostic equation for 𝛿𝑧. There is no 

projection of the vertical pressure gradient force into the horizontal; similarly, there is no 

projection of the horizontal winds 𝑢, 𝑣 into the vertical, despite the slopes of the Lagrangian 

surfaces. 

Finally, the ideal gas law: 

𝛿𝑝∗

𝑝 = 𝑝∗ + 𝑝′ = 𝜌𝑅𝑑𝑇𝑣 = − 𝑅𝑑𝑇𝑣, (4) 
𝑔𝛿𝑧

where 

𝑇𝑣 = 𝑇(1 + 𝜖𝑞𝑣)(1 − 𝑞𝑐𝑜𝑛𝑑),            (5) 

is the “condensate modified” virtual temperature, or density temperature, is used to close the 

system of equations. Here, 𝑞𝑐𝑜𝑛𝑑 is the (moist) mixing ratio of all of the liquid and solid-phase 

microphysical species, if present. When the gas law is used, the mass 𝑝∗ in this 

computation must be the mass of only the dry air and water vapor, and not including the mass 

of the condensate (non-gas) species. A rigorous derivation of the virtual and density 

temperatures is given in K. Emanuel, Atmospheric Convection (1994, Oxford), Sec. 4.3. 

These equations are also applicable to hydrostatic flow, in which 𝑤 is not prognosed and 𝑝 = 𝑝∗ 

is entirely hydrostatic. 
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5 Dynamics along Lagrangian surfaces 

The layer-integrated equations (3) are discretized along the Lagrangian surfaces and integrated 

on the “acoustic” or “dynamical” time step 𝛿𝑡 using forward-backward time-stepping as in LR97. 

The vertical velocity 𝑤 is a three-dimensional cell-mean value and partially advanced using the 

advection scheme. The geometric layer depth 𝛿𝑧 is simply the difference of the heights of the 

successive layer interfaces, which with 𝛿𝑝∗ defines the layer- mean density and the location of 

the Lagrangian surfaces. The air mass is the total air mass, including water vapor and 

condensate species. 

FV3 places the wind components using the D-grid (following Arakawa’s terminology), which 

defines the winds as face-tangential quantities. The D-grid permits us to compute the cell-mean 

absolute vorticity Ω exactly using Stokes’ theorem and a cell-mean value of the local Coriolis 

parameter 𝑓, without performing any averages or interpolations. The wind components 

themselves are face-mean values “along the cell edges” (not cell-mean values). 

Following the notation from L04, PL07, and HL13, we can write the discretized forms of 

(3), excluding the vertical components, as: 

𝛿𝑝∗(𝑛+1) = 𝛿𝑝∗𝑛 + 𝐹[𝑢∗, 𝛿𝑝𝑦] + 𝐺[𝑣∗, 𝛿𝑝𝑥] (6) 

1
Θ𝑛+1 = Θ𝑛  

𝛿𝑝∗𝑛 (7)
{ + 𝐹[𝑋∗, Θ𝑦] + 𝐺[𝑌∗, Θ𝑥]} 

𝛿𝑝∗(𝑛+1)

1
𝑤∗ = 𝛿𝑝∗𝑛 (8) 

{𝑤𝑛 + 𝐹[𝑋∗, 𝑤 +
𝑝∗(𝑛+ 𝑦] 𝐺[𝑌∗, 𝑤𝑥]} 

𝛿 1)

𝑢𝑛+1 = 𝑢𝑛 + ∆𝜏[𝑌(𝑣∗, Ω𝑥) − 𝛿𝑥(𝐾
∗ − v∇2𝐷) + 𝑃𝑥] (9) 

𝑣𝑛+1 = 𝑣𝑛 + ∆𝜏[𝑋(𝑢∗, Ω𝑦) − 𝛿𝑦(𝐾
∗ − 𝑣∇2𝐷) + 𝑃𝑦]. (10) 

The quantities 𝑃�̂�, 𝑃�̂� are the horizontal pressure-gradient force terms computed as in L97, the 

primary difference being that the forces due to hydrostatic and nonhydrostatic pressures are 

computed separately, and that the hydrostatic pressure gradient computation uses the log of the 

pressure to improve accuracy. The vertical nonhydrostatic pressure-gradient force is evaluated 

by the semi-implicit solver described in section 5; only the forward advection of 𝑤 is performed 

during the Lagrangian dynamics, producing a partially-updated 𝑤∗. 

For stability, the pressure gradient force is evaluated backwards-in-time: the flux terms in the 

momentum, mass, and entropy equations are evaluated forward by the advection scheme, and 

the resulting updated fields are used to compute the pressure gradient force. This forward-

backward time-stepping is stable without needing to use predictor-corrector or Runge-Kutta 

methods.  
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In nonhydrostatic simulations it is recommended that the time off-centering for the horizontal 

pressure-gradient force be consistent with that used in the semi-implicit solver, which includes 

the vertical nonhydrostatic pressure-gradient force computation, to ensure consistency between 

the two. If the semi-implicit solver is run fully-implicit (𝛼 = 1) then the pressure-gradient force 

should be evaluated fully backward (𝛽 = 0); otherwise use 𝛽 = 1 − 𝛼. 

6 Nonhydrostatic semi-implicit solver 

An equation for 𝑧 can be derived from the definition of 𝑤: 

𝐷𝑧
𝑤 =  = 𝐷𝐿𝑧 + �⃗⃗� ∙ ∇𝑧 (11) 

𝐷𝑡

The time-tendency of geopotential height is then the sum of the advective height flux along the 

Lagrangian interfaces and the vertical distortion of the surfaces by the gradient of 𝑧. 

Discretizing: 

𝑧𝑛+1 = 𝑧𝑛 + 𝐹[𝑢∗, 𝛿𝑧𝑦] + 𝐺[𝑣∗, 𝛿𝑧𝑥] + 𝑤𝑛+1∆𝑡. (12) 

Since 𝑧 is solved for on the interfaces, we can then simply take the vertical difference to get 𝛿𝑧. 

Recalling that the Lagrangian dynamics in (7) only performs the forward advection of the vertical 

velocity, yielding 𝑤∗, we then need to evaluate the vertical pressure-gradient force: 

𝑤𝑛+1 = 𝑤∗ − 𝑔𝛿𝑧𝑛+1𝛿𝑧𝑝
′𝑛+1.            (13) 

The pressure perturbation 𝑝′ can be evaluated from the ideal gas law, 

𝛿𝑝
𝑝′ = 𝑝 − 𝑝∗ = 𝑅𝑑𝑇𝑣 − 𝑝∗ (14) 

, 
𝑔𝛿𝑧

requiring simultaneous solution of 𝑤, 𝑝′, and 𝛿𝑧 using a tridiagonal solver. 

There is an option to off-center the semi-implicit solver to reduce implicit diffusion. The 

parameter 𝛼 can be varied between 0.5 and 1 to control the amount of off-centering, with 𝛼 = 1  

being fully-implicit.  As discussed in Section 4 this off-centering parameter should be set to  

𝛼 = 𝛽 − 1, consistent   with that used for the horizontal pressure-gradient force. 

The boundary conditions used are 𝑝′ = 0 at the model top, and �⃗⃗� ∙ 𝑛�̂� = 0 at the lower 

boundary of 𝑧 = 𝑧𝑠. This is the “free-slip” boundary condition, that the lower boundary is 

a streamline.  The surface vertical velocity 𝑤𝑠  can be computed from (11) by advecting 

the surface height 𝑧𝑠: 

𝑧∗
𝑠 − 𝑧𝑠

𝑤𝑠 = , (15)
∆𝑡
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where 𝑧𝑠
∗ is the advected value and 𝑧𝑠 the height of the topography. 
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